NSTEPS in Oregon- Stressor-Response Relationships in OR Ecoregions

Dan Sobota and Shannon Hubler
Oregon Department of Environmental Quality
Jon Harcum and Mike Paul
Tetra Tech
March 4, 2015

Why Algae?

Excess aquatic plant growth is costly to human health & the environment

Set Weather V

Can cause water quality impairments (e.g., DO & pH violations)

Oregon Examples

- Deschutes River:
 - Public complaints of excessive algal growth and changes in macroinvertebrate assemblage following installation of a variable-depth flow control structure below Lake Billy Chinook
 - Nuisance aquatic weeds & excess algal growth above Bend

Oregon Examples

 Rogue River: public complaint of excess algal growth below a sewage treatment plant outfall

Identifying causes for excessive plant growth

- Limited tools available to <u>easily</u> identify causes
- Nutrient enrichment often is a cause, but identifying types and forms responsible can be intensive and expensive
- Complicated by effects of temperature, light, invasive/introduced species, and flow
 - need to be taken into account for nutrient assessments

Objectives

- Develop stressor-biological response models to screen streams and rivers statewide for effects of nutrient enrichment on algal species and growth
 - Response variables: metrics of periphyton communities and productivity
- Use tool to help identify and prioritize statewide monitoring efforts for water quality impairments

Project Plan and Timeline

- Data compilation: Jon Harcum, Tetra Tech
- Conceptual Model: Dan Sobota
 & Shannon Hubler, ODEQ
- Stressor-Response: Mike Paul, Tetra Tech
- Study Design: N-STEPS OR Team
 - ODEQ
 - EPA
 - Tetra Tech
 - USGS
- Phase II: dependent upon ODEQ monitoring priorities
 - Final statewide screening tool could be years in the making

Conceptual Model

"State" Factors

Time/
hydrology

Position on hydrograph

Habitat
Substrates
Gradient
GW – SW Exchange

Chemical conditions

Resources
Light
Nutrients

Climate
Temperature
patterns

Biology Species pool

"State" Factors

Time/
hydrology
Position on
hydrograph

Habitat
Substrates
Gradient
GW – SW Exchange
Chemical conditions

Resources Light Nutrients Climate
Temperature
patterns

Biology Species pool

Aquatic plant community					
Macrophytes	bryophytes	Periphyton	Phytoplankton		

"State" Factors Habitat Time/ Climate Resources **Substrates** Biology hydrology Gradient Light Temperature Species pool Position on GW – SW Exchange Nutrients patterns hydrograph **Chemical conditions** Human modification of interest Plant community **Aquatic plant community** of interest Macrophytes bryophytes Periphyton Phytoplankton

Data compilation

- MS Access database delivered by Tetra Tech
- Unique sites: 4,331
- Chemistry + periphyton assemblage

Agency	Project	n	Scale
EPA/ODEQ	EMAP-West	1,915	Nation
	NRSA	1,924	Nation
11000	NAWQA-NWIS	225	ID – 70 WA – 106 OR - 49
USGS	Clackamas	24	OR basin
	Molalla	5	OR basin
	N. Umpqua	28	OR basin
IDEQ		210	ID

Next Steps

Stressor Response Analysis I

- Exploratory summaries
- Classification analyses
- Linear and nonlinear stressor-response models
- Conditional probability estimates for response thresholds
- Nonlinear and/or nonparametric models

Stressor Response Analysis I (cont'd)

- Highlight data gaps for stressor, responses, confounding variables, and co-occurring stressors
- Facilitate conceptual model evaluation and refinement
- Serve as the focus of additional data collection

Considerations for Phase II

- Collect new data (Deschutes 2016, other rivers as funding becomes available)
- Make use of data collected by Portland State, consulting firms, and USGS for model validation/modifications
- Explore use of Structural Equation Modeling for confirming conceptual model structure and examining indirect effects

Acknowledgements

- Rochelle Labiosa, US EPA Region 10
- Jacques Oliver, US EPA HQ
- Chauncey Anderson & Kurt Carpenter, USGS
- Bonnie Lamb, Deb Sturdevant, Gene Foster, & Aaron Borisenko, ODEQ

Questions?

